
QBasic Tutorial – An introduction to Programming Page 1© 1997-200 No-Moa Publishers
Wednesday, February 09, 2000

www.tongatapu.net.to

18 January 1999QBQBASICASIC TTUTORIALUTORIAL

GGOALSOALS ANDAND OOBJECTIVESBJECTIVES

This Qbasic Tutorial provides an introduction to Computer Programming through
the use of the Microsoft Qbasic programming language.

At the conclusion of this module, students should be able to create their own
Qbasic programs from a list of problem tasks.

MMODULEODULE OOUTLINEUTLINE

Syntax and Semantics
Variable Storage
Mathematical Expressions
A Problem Resolution Process
Flow Control
Making Comparisons – Conditionals
Repetitions – the FOR loop
Repetitions – the DO loop
Repetitions – the EXIT condition loop

FFLOWLOW CCHARTINGHARTING

The notes make extensive use of flow-chart symbols to describe,
explain the flow, or sequence of program instructions. Standard
symbols are used, so other people can read your flow chart dia-
gram, and you can read other peoples’ diagrams.

Program instructions are described through the flow-chart with instructions
grouped into different symbols, and the ‘flow’ or sequence of instructions being
used directed through the use of connecting arrows.

Terminator. The terminator symbol marks the beginning, or ending of a se-
quence of instructions. This is often used when marking the beginning and end-
ing of the program.

Process. Marks instructions that are processed such as calculations and decla-
rations. For our purpose, if you cannot figure out which symbol to use, then use
this symbol as a placeholder until you can be more certain which is the better
flow-chart symbol to use. We will use it for when we make mathematical calcu-
lations and declaring variables.

Input/Output. Marks instructions to perform data input (bring data into the
program from outside) or output (send data out from the program). We will use
this when we ask the user for keyboard input and when we display information
to the screen or printer.

Decision. Marks instructions where the program makes a decision. Decisions
are the only symbols allowed to have more than one flow out of the symbol. De-
cisions should have an outside flow of yes and no. We will use this symbol when
comparing different data items.

Process

Start

Stop

Notes:
These notes are espec ia l ly
developed to assist teachers and
students in classroom instruction with
exercises to re-enforce instruction.

Students with high language skills
and familiarity with computers should
be able to independently complete
this tutorial.

Process

Terminator

Input /
Output

Decision

Predefined
Process

Page
Connector

ANSI Flow Chart
Symbols

Connector

Direction Arrows

QBasic Tutorial – An introduction to Programming Page 2© 1997-200 No-Moa Publishers
Wednesday, February 09, 2000

Predefined Process. Marks a group of instructions. A predefined process can
be used to specify that the specifics of these instructions are already known, or are
shown in some other place. We will use this symbol to simplify larger programs,
where we already know what is to be done and do not want the flow-diagram to
take up too much space.

Connector. Joins different parts of the chart together. This is used when the
chart gets big and the number of lines may become confusing. The connector cir-
cle is labelled with the label that will identify the ingoing connector.

Page Connector. Joins different pages of a chart. Use the page connector at
the bottom of the page, using the number of the page where the flow chart will
continue as the label. On the top of the connected page, place a page connector
symbol at the top of the flow-chart

Direction Arrows. These arrows connect the different symbols, identifying in
which direction the instructions will be processed.

CASE STUDY
Correct and Incorrect Use of Flow-chart symbols.

Observe in the sample diagram that the following errors are in the ‘Incorrect’ use
column.

♦ Flow should be from top to bottom, and should not split sideways except
through the use of a decision, or diamond, symbol.

♦ Only a decision can have multiple outgoing connections (arrows).

A B

A

B

Incorrect Use Correct Use

QBasic Tutorial – An introduction to Programming Page 3© 1997-200 No-Moa Publishers
Wednesday, February 09, 2000

PPROGRAMMINGROGRAMMING LLANGUAGESANGUAGES

Computers only comprehend binary, 0’s and 1’s so writing instructions for a com-
puter to perform requires sending the CPU and peripheral devices a sequence of
0’s and 1’s in the pre-determined sequence that will cause the computer to perform
what tasks is required of it.

0’s and 1’s mean very little to most human beings, and putting together a correct
sequence of 0001101011 01101011011 is problematic because it is very easy to
make a mistake. A mistake of putting a 1 where a 0 should be is minor to a human
but very important/significant for computers.

Computer Programming Languages were designed to allow humans to work in a
language more similar to what we are used to. The human writes the English like
commands from the Programming Language and the Language tools convert these
instructions into the 0’s and 1’s that the computer can understand.

LANGUAGE RULES
Computer Programming Languages maintain a number of rules that are common
to the regular human language. To be a language it must have rules that prevent
ambiguity, misunderstanding, otherwise computers will behave differently from
each other.

Grammar. Computer Languages have grammar rules, commonly termed “Syntax”
which determines the meaning of the instructions.

SSUMMARYUMMARY CCOMMANDSOMMANDS ININ THETHE QBQBASICASIC IINTEGRATEDNTEGRATED DDEVELOPMENTEVELOPMENT EENVIRONMENTNVIRONMENT (IDE)(IDE)
The QBasic development environment sup-
ports the use of shortcut keys to quickly ac-
cess menus. Table 7.1 lists the menu short-
cut keys. The table uses the bar character
“|” to specify the major menu selection and
the sub-menu. For example, the F5 func-
tion key is the shortcut key for selecting the
Run Menu and then the Continue com-
mand.

Use of QBasic does not require memorising
these shortcut keys, and as you spend more
time with QBasic these keys will help you

L
an

g
u

ag
e

C
o

n
ve

rt
er

Program
Instructions

PRINT “Hello”

INPUT CPU OUTPUT

STORAGE

01001011 01001011

01
00

10
11

Key Menu Option or Selection

F1 Help

F2 SUBs...

F3 Repeat Last Find

F4 View | Output Screen

F5 Run | Continue

Shift+F5 Run | Start

F6 Window (Change between Windows)

Table 7.1 Menu Shortcut Keys

QBasic Tutorial – An introduction to Programming Page 4© 1997-200 No-Moa Publishers
Wednesday, February 09, 2000

make use your time more effectively.

A program in QBasic is entered into the Edit Window, and the programmer tells
QBasic to execute (run) the program instructions by using the command listed at
the status bar, bottom of the screen <F5=Run> or by selecting the Run menu.

The QBasic Development Environment is set into 3 tiled windows. The top win-
dow (usually hidden and only available when you ask for it) is used to display
HELP information. The middle window is the Editing window where program in-
structions are listed, edited. The lower window is the “Immediate” window where
QBasic commands/instructions can be entered for immediate execution.

The output screen, where the program puts out information, is hidden behind the
Integrated Development Environment (IDE) and can be viewed by using the
<F4=Output Screen>.

BBEGINNINGEGINNING WITHWITH AA SIMPLESIMPLE PROGRAMPROGRAM: PRINT: PRINT

The above QBasic program when typed in and executed (by Selecting
<F5=RUN><F5=RUN><F5=RUN><F5=RUN>) will display an output screen as in Screenshot 7.2.

After you “Press any key to continue” you will be back into the Editing window.
To look again at the ‘output’ window, shown in this diagram, use the command
<F4=Output Screen><F4=Output Screen><F4=Output Screen><F4=Output Screen>

OUR LINE BY LINE REVIEW.

CLS

is a QBasic instruction to “CLear the Screen”. This tells QBasic to send to the
Screen the instructions required to clear what ever was there previously.

Screenshot 7.1: The QBasic Integrated Development Environment (IDE)

Start

Stop

Output

CLS
PRINT "Hello Everyone, I am a QBasic Program"

Listing. Our first program

QBasic Tutorial – An introduction to Programming Page 5© 1997-200 No-Moa Publishers
Wednesday, February 09, 2000

PRINT “Hello Everyone, I am a QBasic Program”

This is an instruction with addi-
tional information. The QBasic
instruction is the “PRINT” com-
mand with additional information
being provided “Hello Everyone,
I am a QBasic Program” placed
inside quotation marks.

The PRINT instruction is used to
print data to the screen or a file.
The ‘data’ to be printed is what-
ever is set after the PRINT. In
this example, “Hello Everyone, I
am a QBasic Program” is what
PRINT is told to put onto the
screen.

SYNTAX CHECKING
Before executing any line of programming, QBasic first checks whether the things
you typed in is valid QBasic language. For many languages, this syntax checking
is generally processed after all the instructions have been listed (program has been
written/coded.)

QBasic has the ability to check each line of programming when the programmer
hits the Enter key. This is easily verifiable (confirmed) by typing in a QBasic
command in lowercase (eg. cls) and watch QBasic change the command to upper-
case (eg. CLS).

INTERPRETED -VS- COMPILED LANGUAGES
The ability of a programming language to check the syntax while the program is
being written is usually attributed, or the programming language itself is usually
categorised as an “Interpretive Language”. Interpretive Languages are so labelled
because of their ability to ‘interpret’ the program instructions while the program-
mer is developing.

A side-effect, or a result from using an Interpretive Languages, is that the program
has to be run from inside the Interpretive Language. In our QBasic example, this
means that to run the program we have to be inside QBasic. This requirement by
Interpretive Language usually means that programs written in this language are
usually slower than if the program did not have to be loaded into the Interpreter.

The counter programming language category is called the “Compiled Language”.
Instead of checking the syntax as the programmer writes the program, the pro-
grammer has to run a separate program (usually called a compiler) which checks
the program syntax and converts the text from the program language (compiles)
into the binary language of computers. The compiling process generates a pro-
gram independent of the programming environment which means you can run the
program without having to go into the language editor.

Screenshot 7.2: The QBasic Output Screen

Hello Everyone, I am a Qbasic program

Press any key to continue

QBasic Tutorial – An introduction to Programming Page 6© 1997-200 No-Moa Publishers
Wednesday, February 09, 2000

COMMON PROGRAMMING ERRORS
When typing in programs, and executing them with F5, a common problem is to
incorrectly type in the program code.

Error: CL S

CLS is very different to the computer from CL (space) S

The above is a ‘syntax’ error, or sentence grammar error since QBasic does not
know what to do with a CL and an S. CL (space) S has no meaning on its own,
unlike CLS (no spaces).

Error: PRINT Hello Everyone, I am a QBasic Program

The print command needs the “quotation-marks” to know which things are to be
put straight to the screen, and which things to try and find from the computers
RAM (memory). In the above example, where there is no quotation marks, the
program will try to find memory space that have been labelled as:-
Hello, Everyone, I, am, a, QBasic, and Program.

Make sure you are careful with typing and note taking.

PRINT puts onto the screen the text inside the “quotation marks” and then starts a
new line.

There are times when a sentence on the screen looks better if it continues, instead
of starting again on the next line. The “;” semi-colon is used in QBasic to tell the
PRINT command to continue the next PRINT statement on the same line.

COMMON PROGRAMMING ERRORS
When the semi-colon is inside the “quotation marks”, it gets printed on the screen
like everything else in “quotation marks”.

When the semi-colon is outside the “quotation marks”, it tells PRINT to continue
the next print instruction on the same line.

CLS
COLOR 9
PRINT "The Print command starts a new line"
PRINT "Unless you use the semi-colon”
PRINT "Which ";
PRINT "continues on the same line."

Listing 1.2. Our Second Program – Printing with semi-colons
Start

Stop

Output

COLOR 9
PRINT "1. Where is ;"
PRINT "This Line"

COLOR 2
PRINT "2. Where is ";
PRINT "This Line"

Listing 1.3. Common Programming Errors – Printing with semi-colons

Start

Stop

Output

QBasic Tutorial – An introduction to Programming Page 7© 1997-200 No-Moa Publishers
Wednesday, February 09, 2000

PRINT USING writes formatted output to the screen or to a file.

PRINT USING formatstring$; expressionlist [{; | ,}]

• formatstring$; A string expression containing one or more

• expressionlist A list of one or more numeric or string expressions to print, separated
by commas, semicolons, spaces, or tabs.

• {; | ,} Determines where the next output begins:
; means print immediately after the last value.
, means print at the start of the next print zone. Print zones are 14 characters wide.

Example:
a = 123.4567
PRINT USING "###.##"; a
a$ = "ABCDEFG"
PRINT USING "!"; a$

PRETTY PRINTING
QBasic’s PRINT USING command gives the programmer more control of how to display information on
the screen.

When printing numerical values, QBasic will automatically pick a format to fit as much of the decimal
values as it can. PRINT USING gives the programmer specific control of how many decimal values are
to be printed out, independent of how many decimals are actually available.

prints the numeric digit, or a space
$ prints a dollar sign
+ prints a + if the number is a positive number
- prints a – if the number is a negative number
. Sets the position of the decimal point. This is useful for lining up the decimal point in a column.

a = 123.4567
PRINT a
PRINT USING "#####.##"; a
PRINT USING "+####.####"; a
PRINT USING "$***"; a

Listing

123.4567
123.46

+123.4567
$%123*

Sample Output

QBasic Tutorial – An introduction to Programming Page 8© 1997-200 No-Moa Publishers
Wednesday, February 09, 2000

IINTRODUCINGNTRODUCING VVARIABLESARIABLES
Review Existing Knowledge: In Form 3 Mathematics, a variable is a letter
usually representing an unknown number.

A co-efficient is a number multiplying the variable, and
An exponent is also called a power or index.

Expanding New Knowledge: Computer programs need space (we will call
memory, RAM) to store information the program wants to manipulate or work on.

If we think of computer RAM as a large table of “stuff”, a program points to a
particular ‘cell’ or memory address by using a label
for the cell, commonly named a ‘variable’.

A ‘variable’ is a name to refer to a location in the
computers RAM, a memory address, or cell. Your
program can get the value of the memory address by
using the variable name, and can also change the
value of the memory address by assigning a new
value to the variable.

To create a variable, you just use a name that is not
already used by the QBasic language. For example,
we cannot use PRINT as a variable name because
QBasic is already using PRINT to mean something
other than a name for a memory address.

The variable age.
We can create the variable ‘age’ in our program by
just using it, and we can create the values for age by
assigning a value to the variable age.

age = 11
PRINT "I am "; age; "years old."

BE DESCRIPTIVE
Age - is a good name for a variable, because it is not
already used (reserved) by QBasic and because it describes what should be the
content of the variable. Whenever we look at the variable ‘age’ in our program

O/S

Programming

Free Memory

3x
Exponent

Variable Co-efficient

The Algebra Variable

2

Content

0

1

2

3

4

5

6

7

8

9

10

11

.

.

.

.

Diagram: Computer RAM
Memory Table

AgeAgeAgeAge

Variable

Location

Start

Stop

QBasic Tutorial – An introduction to Programming Page 9© 1997-200 No-Moa Publishers
Wednesday, February 09, 2000

code it looks like a memory address where a number related to the age of a person
is stored.

rk11 - will work as a variable name because it is not used (reserved) by QBasic
but it means very little to us and can be confusing when we use it.

When you write your programs, think about what the variables will be used for
and try to make the variable’s name describe what the variable contains. This
makes it simpler for you when you need to check your program, and simpler for
your friends when you ask them to help you check your program.

RRULESULES ONON VVARIABLEARIABLE NNAMESAMES

Variables names for QBasic can be whatever fits into the following rules:
• The first character must be a letter from the alphabet
• After the first letter, a variable name can have letters, digits or underscores
• Variable names cannot be words already used by QBasic (reserved) for other

purposes

QBasic does not care whether your variable names are upper-case (capital letters),
lower-case (small letters), or a mix of the letters. QBasic will change the lettering
style to what ever you use as the last lettering style.

EXAMPLES (CAN USE)
GarbageCans, GreenTrees, Room_23

EXAMPLES (CANNOT USE)
23Chicago, PRINT, Room 23, Springsteen~45

What is wrong with the above variable names ?

EXERCISES
List FIVE variables that are valid (we are allowed to use)

List FIVE variables that are not valid (we are not allowed to use)

For example, in the above sample program, if you type the last occurrence of the
age variable to all upper-case AGE, QBasic will change all “age” variables to
upper-case.

Looking through the code execution (desk-check)

Line 1. the screen should clear.
Line 2. The program creates a variable called ‘age’ and sets it to point

to a memory address, cell. The assignment operator “=” puts the
value 11 into this memory location.

CLS
age = 11
PRINT "I am "; age; "years old."
age = 25
PRINT "But I will grow and soon will be"; age

Listing 1.4. Using variables to store data

QBasic Tutorial – An introduction to Programming Page 10© 1997-200 No-Moa Publishers
Wednesday, February 09, 2000

Line 3a. The PRINT statement finds a “I am” is in quotation marks and sends
it to the screen.

Line 3b. The PRINT statement finds ‘age’ by itself, so it checks to see if
it is a variable, and gets the value of the memory address to send
to the screen.

Line 3c. The PRINT statement finds “years old” in quotation marks and sends
it to the screen.

Line 3d. The PRINT statement does not find a semi-colon at the end of the
line, so it starts a new line for the next PRINT command.

Line 4. The assignment operator sends 25 to the memory address pointed to
by ‘age’.

Line 5a. The PRINT statement finds “But I will grow and soon will be” in
quotation marks so it sends it to the screen.

Line 5b. The PRINT statement finds ‘age’ by itself, so it checks to see if
it is a variable, and gets the value of the memory address to send
to the screen.

Line 5c. The PRINT statement does not find a semi-colon at the end of the
line, so it starts a new line for the next PRINT command.

The output on the screen will look like the below diagram:

I am 11 years old
But I will grow and soon will be 25

Mixing the use of variables, and the PRINT semi-colon allows us to combine
various bits of information when we display the results to the screen.

Fill in the details below, how will the variables be allocated in the print display
below?

The year is ___
The month is ___
The day is ___
-or-
The day is __ / __ / ___

CLS
year = 1921
day = 14
month = 3
PRINT “The year is”; year
PRINT “The month is”; month
PRINT “The day is”; day
PRINT “-or-”
PRINT “The day is ”;day;”/”;month;”/”;year

Listing 1.5. Printing multiple variables

QBasic Tutorial – An introduction to Programming Page 11© 1997-200 No-Moa Publishers
Wednesday, February 09, 2000

SSTORAGETORAGE –– AALLOCATINGLLOCATING SPACESPACE TOTO STORESTORE IINFORMATIONNFORMATION

The available computing resources; disk-space, RAM space is limited. The lim-
ited resource, and because computers handle text differently from numbers has
led to programming languages defining the use and space used by storage loca-
tions.

Numbers – are stored as Integer, Long Integer, Single, or Double. Single and
Double are variable data-types that can store ‘whole numbers’ which includes
decimal values. Integers do not have decimal values.

String – A string is QBasic's term for storage locations pointed to by variables.
Strings can contain numbers, but when they do mathematical formulas do not
work on the numbers as they would with numbers stored in variables designed for
numbers.

It is a wise programmer who learns to use the appropriate data-type for the pur-
pose they choose their variable, and to select the maximum storage (number of
bytes) required.

DIM – DIMENSIONING, EXPLICITLY SPECIFYING THE STORAGE LOCATION.
It is good programming practice, to specify the storage requirements for variables
at the beginning of the program.

QBasic uses the keyword DIM to dimension, set aside the memory location to
store the data being pointed to by
your variable.

DIM variable AS data-type

The DIM keyword is specified at the beginning of the line, followed by the vari-
able name you choose, the keyword AS and the data-type to be used. For example:

DIM numb1a AS INTEGER
DIM numb1b AS LONG
numb1a = 1 ' This is a valid use of numb1a
numb1a = 1.1 ' This is not a valid use

LONG Integers can hold bigger numbers
than the regular integer.

Singles and Double can store numbers which include decimal values. There-
fore, it can also hold integers. This num-
ber type can hold larger numbers than In-
teger and Longs

DIM numb2a AS SINGLE
DIM numb2b AS DOUBLE
numb2a = 142
numb2a = 1.0234

Data Type
(byte size)

Minimum
Value

Maximum
Value

Integer
(2 bytes)

-32,768 32,767

Long Integer
(4 bytes)

-2,147,483,648 2,147,483,647

data-types
INTEGER, LONG, SINGLE, DOUBLE,
STRING, or a user-defined data-type

Data Type
(byte size)

Minimum Value Maximum Value

Single-precision (4 bytes)

Positive 2.802597*10-45 3.402823*1038

Negative -3.402823*1038 -2.802597*10-45

Double-precision (8 bytes)

Positive 4.940656458412465D-324 1.79769313486231D+308

Negative -1.79769313486231D+308 -4.940656458412465D-324

Storage.
This section as-
sumes completion
of other modules
on binary numbers
and their use in
computer storage.

QBasic Tutorial – An introduction to Programming Page 12© 1997-200 No-Moa Publishers
Wednesday, February 09, 2000

Data Type
(byte size)

Minimum Value Maximum Value

String Length
(varies)

0 characters 32,767 characters

Strings are set up by using the STRING keyword.

DIM brand as STRING
brand = "Nike"
brand = "Estee Lauder"

Most computer programming languages require specifying the data-
storage requirements before using it. One of BASIC's features, and often
criticized, is that it allows the programmer to not specify the storage re-
quirements. When BASIC encounters, or comes across a variable that
has not been defined (DIMensioned) then BASIC will take a guess at what
type of storage it should be. Sometimes it guesses right, other times it
makes a mistake.

SHORTCUTS, EXPLICITLY SPECIFYING THE STORAGE LOCATION.
A short-cut (or short-hand) method for dimensioning storage location is to use
QBasic's special symbols after the variable name.

variable% - The % specifies the variable is an integer
variable& - The & specifies the variable is a Long
variable! - The ! specifies the variable is a Single
variable# - The # specifies the variable is a Double
variable$ - The $ specifies the variable is a String

' Using BASIC's short-cut variable dimensioning
' -otherwise known– as suffixes

Numb% = 4
numbers! = 1027.25
brand$ = "Avon Lady"

STRINGS – STORING WORDS AND LETTERS (ALPHANUMERIC DATA)

A simple example for using strings is to store names, such as a person’s name or
address. Numbers can be put in a string, but because this storage space is not
specified for a number QBasic will handle it different to 'numbers.'

name1$ = "Freddy Bloggs"
name2$ = "Freddy Bloggs Sister"
PRINT name1$
PRINT name2$

The above program will create two new string variables name1$ and name2$ to
hold the value given to them above. For example, we are telling the variables to
hold "Freddy Bloggs", and "Freddy Bloggs sister". The following PRINT state-
ments will print out the contents of the variables to screen.

QBasic Tutorial – An introduction to Programming Page 13© 1997-200 No-Moa Publishers
Wednesday, February 09, 2000

GGETTINGETTING KKEYBOARDEYBOARD IINPUTNPUT –– LLETTINGETTING THETHE UUSERSER HHAVEAVE AA SSAYAY

Variables are great, but they really shine (are of extra value) for getting informa-
tion to and from the user.

We already know how to use the keyboard to enter data and store it within a vari-
able of your choice. We have already used the following statement.

CLS

PRINT "Please Enter your Name"
INPUT name$

PRINT "Hello ";name$

The above program will simply ask you for your
name and when the [Return] or [Enter] key has
been pressed, the variable information is printed to
the screen.

INPUT can also print-out information inside quota-
tion marks as ‘prompts’ to the user for what we want
as input. (just as if we were using the print com-
mand.)

CLS
INPUT "Good-day, what is your name ?", name$
PRINT "Hello"; name$; ", how are you ?"

Mixing INPUT and OUTPUT, using the ";" semi-colon is a tool for communicat-
ing with the user, formatting the output of our program onto the screen.

CLS
INPUT "Enter a year "; year
INPUT "Enter a day "; day
INPUT "Enter a month "; month

PRINT "The year is"; year
PRINT "The month is"; month
PRINT "The day is"; day
PRINT "-or-"
PRINT "The day is ";day;"/";month;"/";year

The above program will display something such as the below (using input of 1998,
8, 10)

Enter a year 1998
Enter a day 8
Enter a month 10

The year is 1998
The month is 8
The day is 10
-or-
The day is 8 / 10 / 1998

We can modify the program to
not contain the " ?" question
mark.

INPUT "",name$

By modifying the INPUT com-
mand to use the comma in-
stead of INPUT on its own, or
using the ";" semi-colon

The question ? disappears.

QBasic Tutorial – An introduction to Programming Page 14© 1997-200 No-Moa Publishers
Wednesday, February 09, 2000

The Comma (,) allows the INPUT command to accept multiple variable values in
the same entry line.

PRINT "Enter your first and last name separated by a comma"
INPUT "", name$, lname$
PRINT "Hello "; lname$; ", "; name$

By using a comma when entering data, the above INPUT command separates the
information entered into the variable names listed in its list. An example output is
listed below:

Enter your first and last name separated by a comma
Samiuela, Taufa
Hello Taufa, Samiuela

Enter your first and last name separated by a comma
Frederick, Von Heimlen
Hello Von Heimlen, Frederick

USING COMMENTS
As a general rule, the overall program should have comments at the beginning,
telling you what the program does. Each section (function) should also have com-
ments explaining what it does and what values it returns. Any area in your pro-
gram that is difficult to understand, less than obvious should be commented.

Qbasic lines that begin with the REM command are ignored, because REM stands
for ‘remark’. The short-hand for typing in REM is to use the single quote (').

At the top of the Program File
Listed here are a number of good ideas for placing at the top of your program file.
Which items you choose to include depends you’re your personal taste
♦ The name of the function or program
♦ What the function or program will do
♦ A description of how the program works
♦ The author’s name
♦ A revision history (notes on each change made)
♦ What compilers, linkers, and other tools were used to make this program
♦ Additional Notes

REM
' Author: Samiuela LV Taufa
' Class: Computer Studies 101
' Date: December 11, 1996
'
' Purpose:
' This is program shows user input, and computer output
PRINT "Enter your first and last name separated by a comma"
INPUT "", name$, lname$
PRINT "Hello "; lname$; ", "; name$

Listing . Demonstrates the use of comments

QBasic Tutorial – An introduction to Programming Page 15© 1997-200 No-Moa Publishers
Wednesday, February 09, 2000

MMATHEMATICALATHEMATICAL EEXPRESSIONSXPRESSIONS -- CCALCULATIONSALCULATIONS
Variables are more interesting when you can manipulate or use their values for
calculations. QBasic supports the standard mathematical functions such as multi-
plication, addition, subtraction and division.

The simplest example of using the mathematical operators is to use the PRINT
statement such as:

cls
age = 25
PRINT 25 * 42
PRINT age * 42

This works very much like a simple calculator.

Qbasic uses a table to distinguish how to represent mathematical symbols into the
programming language. For example, since we cannot type in y = x2 in Qbasic
the mathematical method (looking at the table) is to type in y = x^2 (using the ex-
ponent operator) or we can use y = x * x (using the multiplier operator).

Given the following mathematical formulas, how would you write it in a line of
QBasic programming?

Math Expression QBasic Expression / Statement
f(x) = y = x2 y = x * x, -or- y = x^2
f(x) y = (x + 2)(x + 1) y = (x + 2) * (x + 1)
A = lw A = l * w
k = 25 ÷ m k = 25 / m
A = πr2 pi = 3.141593

A = pi * r * r
A = pi * r ^ 2

C = 2π pi = 3.141593

C = 2 * pi * r
f(x) = y = x½ y = x ^ (1/2)

EXERCISE

Instructor Notes:
♦ Write up only the math expression,

and work together with the class
on the QBasic expression.

♦ Other mathematical functions
known to the class would also
serve as good examples for
translating into QBasic Expression.

QBasic Operator Table

Operator Sample Explanation

= A = B Assigns value at its right to the variable at its left. Also used inside an IF statement to
compare the value on the left to that on the right.

+ A + B Adds value at its right to the value at its left.

- A – B Subtracts value at its right from the value at its left.

* A * B Multiplies value at its right by the value at its left.

/ A / B Divides value at its left by the value at its right

\ A \ B Integer division symbol. Same as divide, and also truncates result to an integer

^ A ^ 2 Exponentiation. Raises the number to its left to the power of the number on its right

QBasic Tutorial – An introduction to Programming Page 16© 1997-200 No-Moa Publishers
Wednesday, February 09, 2000

To further evaluate, check, our understanding of how mathematical operators
work, solve the following Qbasic formulas using the given values for the vari-
ables.

BEDMAS – ORDER OF EVALUATION
Formulas follow the standard arithmetic order of operation rules summarised by
the term: BEDMAS

Level 1 Brackets
Level 2 Exponentiation
Level 3 Division and Multiplication
Level 4 Addition and Subtraction

Higher levels are calculated before the levels below it. Level 1 (Brackets) have
precedence, or are calculated before Level 2, 3, and 4. Likewise, Level 2 has
higher priority and is calculated before Level 3, and 4.

Operations in the same level (for example Level 3, Multiplication and Division)
can be performed in any order. 2 * 3 / 2 provides the same answer whether the
multiplication is calculated first than the division, or the division is calculated first
before the multiplication.

PROJECT EXERCISE
Write a program to calculate the volume of a circle by using the following for-
mula, and values:
V = πr2h

π = 3.141593
r = 10
h = 11

x y z Formula Value ?

4 11 3 z = x ^ 2 + y z ?

2 1 3 y = 2 * x + 4 * z + y y?

y = 4*x^2 + 15*z + 32 y?

QBasic Tutorial – An introduction to Programming Page 17© 1997-200 No-Moa Publishers
Wednesday, February 09, 2000

PPROBLEMROBLEM SSOLVINGOLVING -- TTHEHE PROBLEMPROBLEM RESOLUTIONRESOLUTION PROCESSPROCESS
To help us understand one good process for solving a problem by using computer
programming, let us try to solve the below problem using a five step procedure
shown here:-

1 Determine the Purpose
2 What are the Required Data
3 Determine the Logic
4 Draft the Computer Program
5 Test & Re-test

CASE STUDY: FINDING THE CIRCUMFERENCE & AREA OF A CIRCLE
We have been asked to write a program to calculate the Circumference and Area
of a circle. We have been given the following formulas for calculating these val-
ues.

Circumference: C = 2πr
Area: A = πr2

1ST. DETERMINE THE PURPOSE
Read carefully the problem given, so we are sure we are solving the problem being
asked. A serious problem is to spend a lot of time writing a program to solve a
problem that no one wanted solved.

Ask questions if you are not sure you understand the problem. Ask questions to
your teacher, your friends, the person who has the problem.

A good summary of the intended solution should be put into the documentation of
your program.

Purpose: To calculate the Area & Circumference of a Circle.

The Sample Output.
It is often useful, where possible, to consider what the output of the program
should look like. This helps the in the thinking, understanding of the process and
purpose and design of the program, as well as the required data.

2ND. WHAT ARE THE REQUIRED DATA
What sort of information do we need to be able to solve our problem? Four useful
categories for determining what data is required are:-
a What do we know ?
b What do we need to calculate
c What do we need to know ?
d What are the intermediary calculations?

(a) What do we know ?

For a circle with radius _________
The Area is ____
The Circumference is _____

Sample Output

QBasic Tutorial – An introduction to Programming Page 18© 1997-200 No-Moa Publishers
Wednesday, February 09, 2000

• From the problem statement we know the mathematical formulae required to
calculate the values.

• We know π is a really big number that we can approximate by using a
smaller number such as 3.141593

(b) What do we need to calculate ?
• We need to calculate the Circumference and the Area
• We know the formula for this calculation in Mathematical Terms

Circumference: C = 2πr
Area: A = πr2

• We know from our previous exercises, how to convert the mathematical for-
mula into the QBasic Statement

Problems not easily resolved with a simple mathematical calculation may require
you to think through differing sequences of calculations, instead of a single for-
mula.

(c) What do we need to know ?
• The formula requires the radius

(d) What are the intermediary calculations ?
There are many problems where we are sometimes required to make calculations
of other values before we can actually isolate and explain what the answer to the
specified problem is.
• For this problem we do not have to make intermediary calculations.

3RD. DETERMINE THE LOGIC

The logic of a program, often called the algorithm, is the sequence of instructions
required to create the solution, answer, to the problem.

Although it may seem difficult to determine the logic or the sequence to solving a
problem, it often is simplified by starting the thinking process instead of worrying
about whether it can be done or not.

Sample Logic/Algorithm Design Process:
Attempt 1.
• Calculate the value of the Area and Circumference
• oops we don’t know what the radius may be.

Attempt 2.
• Get the value for radius from somewhere (lets get it from the user)

• Calculate the value of the Area and Circumference

• Get the Value for radius

• Calculate the Area, Circumference

• Put out the Area, Circumference

QBasic Tutorial – An introduction to Programming Page 19© 1997-200 No-Moa Publishers
Wednesday, February 09, 2000

• Put it out for the user to see
• clean up the logic process
Attempt 3.
• Start
• Define known values (eg. π)
• Get the required unknown values, radius
• Calculate required values, Area and Circumference
• Output the data for the user
• Stop

SSOMEOME HHOOUSEUSE CCLEANINGLEANING

It is good practice at this point to define the variable names to be used. Again, use
variable names that are self-explanatory, so lets define the variables we will use:

Circumf for the Circumference C, may contain decimal values so we use either a
SINGLE or DOUBLE.
Area for the Area A, may contain decimal values so we use ei-
ther a SINGLE or DOUBLE. and
PI for the value of π, may contain decimal values so we use ei-
ther a SINGLE or DOUBLE.

radius will be used for the value of the radius which we will
ask from the user, may contain decimal values so we use either
a SINGLE or DOUBLE.

4TH. DRAFT THE COMPUTER PROGRAM

Although some people may think their programming skills are
cool enough that they are now ready to create the program on
the computer, it is always good practice to draft your program
on paper, and to test the logic implementation by paper-
execution of your program.

This is the time where we translate our logic/algorithm de-
signed in the previous step, into the computer instructions spe-
cific to the programming language we are using (QBasic)

5TH. TEST AND RE-TEST

Many programmers become confident (arrogant) of their skills
to the point they neglect to adequately test their programs. The worst thing for a
user is to trust a program will work correctly and have it fail because the program-
mer couldn’t be bothered to spend enough time working through the program to
minimise potential errors.

Spend as much time as possible testing, and re-testing your programs.

For our exercise: We know that the only value that changes is radius so it is a
good idea to calculate on paper (or using your calculator) a few values for radius
and then compare this with the program result.

Calculate Area
&

Circumference

Get unknown
values from

user

Declare Variables.
Define Known

Values

Start

Output the
results

Stop

(b) Declare Cir-
cumf, Area, PI,
radius. We are
also define PI to
be 3.147

(c) radius

(d) Area, Circumf

(e) Area, Circumf

(f)

(a)

QBasic Tutorial – An introduction to Programming Page 20© 1997-200 No-Moa Publishers
Wednesday, February 09, 2000

Values for radius, Manual Calculation Program Calculation

12

14

15

22

45

REM
' Author:
' Class:
' Date:
'
' Purpose:
' This program will calculate the Area and Circumference of a Circle
' after recieving the value for the radius from the user.
'
' (a) Start
CLS
' (b) Declare Variables, Define Known Values
DIM radius AS DOUBLE ‘ Radius
DIM PI AS DOUBLE ‘ pi
DIM Circumf AS DOUBLE ‘ Circumference
DIM Area AS DOUBLE ‘ Area
PI = 3.141593

COLOR 9
' (c) Get Required data from user
PRINT “This program calculates the Area and Circumference of a Circle”
INPUT “What is the radius of the circle”; radius

' (d) Make the Calculations
Circumf = 2 * PI * radius
Area = PI * radius ^ 2

' (e) Send the results to the screen for the user
COLOR 2
PRINT "For a Circle of radius"; radius;
PRINT "and using a value for PI as"; PI
PRINT "The calculated Circumference is"; Circumf
PRINT "The calculated Area is"; Area
'
' (f) Stop

Listing - Suggested Solution

QBasic Tutorial – An introduction to Programming Page 21© 1997-200 No-Moa Publishers
Wednesday, February 09, 2000

Decision
Yes

No

FFLOWLOW CCONTROLONTROL
Program flow is the order, or sequence (flow) from one program
instruction to another. We have so far seen program flow
sequentially from the first instruction to the last. Flow control
are the methods for changing, controlling the flow by which
instructions are ‘executed’ or ‘processed’ by the computer.

Linear. When program instructions are processed one after the
other is a straight sequence, this flow is called “linear”. In our
flow-chart symbols, we can see this by the arrows always
flowing straight down without any deviations.

Branching. When a program execution
changes direction for only a specified condition, this is called
branching. We can see this in our flow-chart symbols when
certain instructions may possibly be ignored, or when certain
instructions may only be accessed for a given condition.
Whenever a change in instruction flow is diagrammed it is
always shown as a diamond shape, indicating that the
program makes a decision at that point for which side it will
branch to. We will be taking a further look at branching in
this section.

Branches are designed to allow certain instructions to be used, while ignoring
others. Branches can also be used to ignore certain instructions if the conditions
are not right for using them.

Loops, iterations. When a sequence of instructions
need to be repeated, then we are performing a loop.
Repeating a set of instructions is controlled by specifying
a decision for when the loop should be repeated, and
when it is time to leave the loop.

Diamond – Decision. The key, and power in branching
is making a decision to do things differently. Remember
that this is the special facility which differentiates
computers from other tools, the ability to act make a
decision dependent on the data presented to it.

To simplify the diamond decision, the decision can either return a “yes” or “no”.
If the decision results in a Yes, then we continue with the “yes” activities,
otherwise we look at what is to be done when the decision is a no.

Reviewing the branching and loops, we can more clearly see the difference the
decision can make in choosing which parts of a program to continue with.

F
ig

.L
in

ea
r

P
ro

g
ra

m
F

lo
w

Decision

F
ig

.P
ro

g
ra

m
w

it
h

a
B

ra
n

ch

Decision

F
ig

.P
ro

g
ra

m
w

it
h

a
L

o
o

p

Understandin
g of this Unit
is very useful
for developing
s t u d e n t s
d i a g n o s i s
skills, and in
other course
m o d u l e s :
d a t a b a s e
q u e r i e s ,
spreadsheet
w h a t - i f
scenarios.

QBasic Tutorial – An introduction to Programming Page 22© 1997-200 No-Moa Publishers
Wednesday, February 09, 2000

Branching. In our flow-chart diagram, when we reach the decision two things
can happen, either our decision results in a “yes,” or a “no”.

♦ “yes,” we ‘branch’ to the red process complete that exercise, skip the blue box
and continue the program.

♦ “no,” we ‘branch’ to the blue process complete that exercise, skip the red box
and continue the program

Loops, iterations. In our flow-chart diagram when we reach the decision two
things can happen, either our decision results in a “yes,” or a “no”.

♦ “yes,” we skip the blue box and continue the program.
♦ “no,” we complete blue process and at the end of the blue process we come

back to check the decision again.

Enough problems require our programs to make decisions about different things to
do that it is not sufficient to solve problems using simple mathematical formulas.

Preamble
Before we can discussion decision making processes (keywords and methods used
by QBasic to make comparisons) we need to first of all understand how
comparisons are made. The following section is a discussion of how comparisons
are made in computer programming.

Decision

Fig. Program
with a Branch

Yes

No

Decision

Fig. Program
with a Loop

Yes

No

QBasic Tutorial – An introduction to Programming Page 23© 1997-200 No-Moa Publishers
Wednesday, February 09, 2000

DDECISIONECISION MMAKINGAKING –– CCOMPARISONSOMPARISONS

LLOOKINGOOKING ATAT RELATIONSHIPSRELATIONSHIPS ANDAND LLOGICOGIC

Decisions are made through comparisons. One comparison is to compare the
relationship between two values, another comparison is to compare different
relationships.

RRELATIONALELATIONAL OOPERATORSPERATORS –– MMAATHEMATICALLYTHEMATICALLY

Mathematical relationships compare the value of the variable on the left hand side
of the relationship operator to the value of the variable on the right hand side.
The following Relationship Operations table summarises the operator use.
For example; if we have three variables a%=1, b%=2, c%=3 then the relationship

in the example below is clear.

Linking the comparison again with our flow-chart diagrams, one line of code will

look like the following chart.

Our decision, condition, is if a% < c%, “yes” then we will branch and complete
the red, while if the decision is “no” then we will complete the blue branch. A
general term for the diamond, or decision, is that it is a condition. Depending on
the ‘condition’ different parts of the program will be processed.

Table: Relationship Operations

Operator Sample Relationship

= 5 = 3 Equality. Compares the value on the left whether it is equal to the
value on its right.

> 5 > 3 Greater than. Compares the value on the left whether it is greater
than the value on its right

< 5 < 3 Less than. Compares the value on the left whether it is less than
the value on its right

<> 5 <> 3 Not Equal To. Compares the value on the left whether it is not equal
to the value on its right

>= 5 >= 3 Greater than or Equal To.

<= 5 <= 3 Less Than or Equal To.

Result

No

Yes

No

Yes

Yes

No

is a% < c%

Fig. is a% < c% ?

Yes

No

a%=1: b%=2: c%=3

a% < c% ' is a% < c% ? YES
c% >= a% + b% ' is c% >= a% + b% ? ___
c% - b% = a% ' is c% - b% = a% ? ___

c% < a ' is c% < a ? NO
b% = a% * 3 ' is b% = a% * 3 ? ___
b% >= c% ' is b% >= c% ? ___

QBasic Tutorial – An introduction to Programming Page 24© 1997-200 No-Moa Publishers
Wednesday, February 09, 2000

PROGRAM SAMPLE
Translating the flow-chart into Qbasic programming code, we
use the template (outline) which is described in more detail
later.

IF condition THEN
stuff in red

ELSE
stuff in blue

ENDIF

If we stick the IF, THEN, ELSE into the diagram. We have
the IF marking our decision. THEN is what happens when the
decision results in a “yes” and ELSE is what happens when

the decision results in a “yes”. ENDIF marks where things go back to the normal
sequence of program instructions.

Using the above structure (template) we now have a program code that will look
something like the following:

PROGRAM EXERCISE

Using the above example, and the template, write the program code for the other
six decision examples, such as c% >= a% + b%.

ORDER OF EXECUTION – WHICH DO WE DO FIRST ?
When an expression contains a comparison and arithmetic operations (such as
addition, subtraction, etc.) QBasic will perform the arithmetic before comparing
the results.

CCOMPARINGOMPARING CCOMPARISONSOMPARISONS

When a problem requires using more than one relationship, it becomes difficult to
keep track of what is happening to the code when the problem requires checking
multiple relationships. Comparing comparisons evaluates more than one
relationship, as one comparison, and makes a decision whether it is a yes or a no.

When a comparison statement (expression) evaluates more than one relationship
then we use the logical operators AND, OR, NOT to
compare the logic.

AND. When we use AND to combine two
relationships, then both relationships have to be TRUE
for the AND operator to return a TRUE. When either
one is FALSE, then AND will return a FALSE.

OR. When at least one of the relationships is TRUE,
the OR will return TRUE. When both relationships
are FALSE then OR will also return a FALSE.

Fig. Comparing different relationships can get
messy

is a% < c%

Fig. is a% < c% ?

THEN

ELSE

IF

ENDIF

IF a% < c% THEN
stuff in red

ELSE
stuff in blue

ENDIF

QBasic Tutorial – An introduction to Programming Page 25© 1997-200 No-Moa Publishers
Wednesday, February 09, 2000

NOT. When the relationship is TRUE, not will reverse it and
return a FALSE. When the relationship is FALSE, not will
reverse it and return a TRUE.

Continuing the previous example:

The Table: Logical Condition Comparison
summarises the above discussion when comparing two
separate test expressions, expression1 and expression2

PROGRAM SAMPLE
Translating the a% < c% AND c% >= a% + b% sample into Qbasic programming
code, we refer to the template (outline).

IF condition THEN
stuff in red

ELSE
stuff in blue

ENDIF

IF a% < c% AND c% >= a% + b% THEN
stuff in red

ELSE
stuff in blue

ENDIF

Translating the NOT (c% - b% = a%) sample
above into Qbasic programming code, we
refer to the template (outline).

IF NOT (c% - b% = a%) THEN
stuff in red

ELSE
stuff in blue

ENDIF

PROGRAM EXERCISE
Using the above example, and the template, write the program code for the other
six decision examples, such as c% >= a% + b% OR c% < a.

Expression1 Expression2 AND OR

T T T T

T F F T

F T F T

F F F F

The Logical Condition Comparisons

Expression NOT

T F

F T

The Logical Condition
Comparisons

Fig. Comparing Comparisons ?

THEN

ELSE

IF

ENDIF

a%=1: b%=2: c%=3

a% < c% AND c% >= a% + b% ' TRUE AND TRUE —> TRUE
c% >= a% + b% AND c% < a ' TRUE AND FALSE —> FALSE
c% < a AND b% = a% * 3 ' FALSE AND FALSE —> FALSE

c% >= a% + b% OR c% < a ' TRUE OR FALSE —> TRUE
c% < a OR b% = a% * 3 ' FALSE OR FALSE —> FALSE

NOT (c% - b% = a%) ' NOT (TRUE) —> FALSE
NOT (b% >= c%) ' NOT (FALSE) —> TRUE

QBasic Tutorial – An introduction to Programming Page 26© 1997-200 No-Moa Publishers
Wednesday, February 09, 2000

ORDER OF EXECUTION.

When an expression contains logical operators, relational operators and arithmetic,
then QBasic evaluates the expression in the following sequence.

♦ arithmetic operations are performed first
♦ relational operations are compared from left to right
♦ logical operations are performed in the order (NOT, AND, OR)
♦ brackets can be used to over-ride the default order.

THE COMPLEX AND THE COMPOUND
Queries, or decisions made when combining more than one test expression is
sometimes called a "Compound" decision.

QBasic Tutorial – An introduction to Programming Page 27© 1997-200 No-Moa Publishers
Wednesday, February 09, 2000

DDECISIONECISION MMAKINGAKING –– TTHEHE IF SIF STATEMENTTATEMENT
The simplest flow control statement is the IF conditional statement. The IF state-
ment provides your program with the ability to make decisions about when it is
appropriate to execute different portions of the instructions.

First the condition1 is evaluated. If it is true, the statements contained in the state-
mentblock-1 are executed. After that is executed, then the program continues after
the END IF line. If not, the statements contained in the ELSEIF block are evalu-
ated, executed.

Both the ELSEIF and ELSE statements are optional, and either both can be absent
or both can be in the program.

A simple example

We want to check a number, variable numb%
whether it is a positive number or not. So we
give it one try.

IF numb% > 0 THEN
PRINT "This number is a positive number"

END IF

First the condition is evaluated. If numb% > 0,
is YES then the PRINT statement is executed.
After that is finished, then we continue with the next line after the END IF line.

If the condition is NO, then we continue to the
next line in the program.

IF numb% > 0 THEN
PRINT "This number is a positive number"

ELSE
PRINT "This number is negative or zero"

END IF

Teaching Note:
The following pages provide more specific examples of the IF … END IF structure. To practise and verify students understanding of
this structure it is suggested that at least two or more examples (of simply the decision structure) be discussed and reviewed during
class time. The review should include the drawing and flow of flow-chart diagrams.

Two samples of source is provided here.

IF age% > 22 THEN IF age% < 5 THEN
PRINT "Too Old ... "; age% PRINT "Little Baby"; age%

END IF END IF

Instructor
Notes:

It is helpful in this
section to 'mark'
for students the
statement blocks
surrounding the
IF statement.

IF condition1 THEN
[statementblock-1]

[ELSEIF condition2 THEN
[statementblock-2]]...

[ELSE
[statementblock-n]]

END IF

condition
statement

block-1

statement
block-n

Fig. The IF statement

THEN

ELSE

IF

ENDIF

numb% > 0
“Positive”

Fig. IF statement sample

THEN
IF

ENDIF

numb% > 0 “Positive”

“Negative”

Fig. The IF ELSE statement

THEN

ELSE

IF

ENDIF

QBasic Tutorial – An introduction to Programming Page 28© 1997-200 No-Moa Publishers
Wednesday, February 09, 2000

Instructor Notes:
Review the flow-
chart and a
selected solution
with students.

CASE STUDY. CHECKING THE SALES RESULTS FROM THE CANTEEN
Our school canteen sometimes makes money, sometimes it does not make as much
money as we want. We would like a computer program that will compare the
daily sales to the Canteen goal sales.

We can set up a target, and ask for the sales. When the sales meets or exceeds
the target then we are happy, but when the sales are below the target this is not a
good thing.

Determine the Purpose.
Stated above.

What are the Required Data.
♦ Target Sales
♦ Canteen Sales

Determine the Logic.
♦ When sales meets or exceeds target, we

are happy.
Draft the Computer Program.

Test & Re-test.

PROGRAM EXERCISE
Create a flow-chart of the suggested solution as described above.

Sales >=
Targe t

“W e are
Happy”

Fig. IF statement sample

THEN
IF

ENDIF

performance$ = "We are not happy" ‘ We are starting off thinking this is
INPUT "Target "; target ‘ not going to be good.
INPUT "canteenSales "; canteenSales

IF canteenSales >= target THEN
performance$ = "We are Happy"

ENDIF
PRINT “*===========================*”
PRINT "Target "; target
PRINT "Sales "; canteenSales
PRINT "Performance "; performance$

Sales >=
Targe t

performance $ = “W e
are Ha ppy”

THENIF

ENDIF

The following is a sample solution to the stated problem.

QBasic Tutorial – An introduction to Programming Page 29© 1997-200 No-Moa Publishers
Wednesday, February 09, 2000

CASE STUDY. PROVIDING A BONUS WHEN SALES ARE HIGH
To give our canteen staff incentives to try and increase sales we decided that we
will give them a bonus if the sales is higher than the target. This requires an extra
decision and work path from the previous problem.

When sales exceeds or meets the target we want to give a bonus, but when the
sales are below the target we want to not give a bonus.

Determine the Purpose.
Stated above.

What are the Required Data.
♦ Target Sales
♦ Canteen Sales
♦ Bonus Amounts

Determine the Logic.
♦ When sales meets or ex-

ceeds target, we are happy,
and we give a bonus.

♦ When sales is less than tar-
get, we are not happy, and
we give no bonus.

Draft the Computer Program.

Test & Re-test.

PROGRAM EXERCISE
Create a flow-chart of the suggested solution as described above.

Sales >=
Target

“We are
Happy”

“We are
not Happy”

THEN

ELSE

IF

ENDIF

INPUT "Target "; target
INPUT "canteenSales "; canteenSales

IF canteenSales >= target THEN
performance$ = “We are Happy”
bonus = 100 + 0.01 * (canteenSales - target)

ELSE
performance$ = “We are NOT Happy”
bonus = 0

ENDIF
PRINT “*===========================*”
PRINT "Target "; target
PRINT "Sales "; canteenSales
PRINT "Performance "; performance$
PRINT "Bonus "; bonus

The following is a sample solution to the stated problem.

Sales >=
Target

performance$ = “W e are not
Happy”

performance$ =
“W e are Happy”

THEN

ELSE

IF

ENDIF

QBasic Tutorial – An introduction to Programming Page 30© 1997-200 No-Moa Publishers
Wednesday, February 09, 2000

CASE STUDY. PROVIDING DIFFERENT LEVELS OF BONUSES
We find that the incentive program works really well, so management would like
us to refine provide different levels of performance incentives depending on how
much the sales is above the target.

Determine the Purpose.
Stated above.

What are the Required Data.
♦ Target Sales
♦ Canteen Sales
♦ Bonus Structure

Determine the Logic.
♦ When sales meets or ex-

ceeds target, we are happy,
and we give a bonus de-
pending on a ‘formula’
given to use by manage-
ment:
♦ When sales is twice or

more the target, give a
bonus 1000

♦ When sales is One and
a half times target, give
a bonus 500

♦ When sales is greater
than the target, give a
bonus 100

♦ When sales is below the target, we need new people.
♦ otherwise, the canteen staff are sacked.

♦ When sales is less than target, we are not happy, and we give no bonus.
Draft the Computer Program.

♦ Mathematical representation of the Bonus ‘formula’.
♦ >= 2 * target; bonus = 1000
♦ >= 1.5 * target; bonus = 500
♦ >= target; bonus = 100
♦ Otherwise bonus = 0; good-bye.

Test & Re-test.

PROGRAM EXERCISE
Create a flow-chart of the suggested solution incorporating the mathematical rep-
resentation described above.

> 2
times

> 1.5
times

>=
targe

t

$1,000
bonus

$500
bonus

$100
bonus

$0 bonus

No

Yes
No

No

Yes

Yes

Charting the Logic

QBasic Tutorial – An introduction to Programming Page 31© 1997-200 No-Moa Publishers
Wednesday, February 09, 2000

Bonus 500

Bonus 100

Sales >= 1.5 *
Target

Sales >=
Target

Sales >= 2 *
Target

Bonus 1000

Bonus 0

Yes No

No

No

Yes

Yes

INPUT "Target "; target
INPUT "Sales "; canteenSales

IF canteenSales >= 2 * target THEN
performance$ = "Excellent"
bonus = 1000

ELSEIF canteenSales >= 1.5 * target THEN
performance$ = "Fine"
bonus = 500

ELSEIF canteenSales >= target THEN
performance$ = "Satisfactory"
bonus = 100

ELSE
performance$ = "Unsatisfactory"
PRINT "You’re FIRED !!!!"

ENDIF

PRINT "Target "; target
PRINT "Sales "; canteenSales
PRINT "Performance "; performance$
PRINT "Bonus "; bonus

The following is a sample solution to the stated problem.

QBasic Tutorial – An introduction to Programming Page 32© 1997-200 No-Moa Publishers
Wednesday, February 09, 2000

DDECISIONECISION MMAKINGAKING –– TTHEHE SELECT CASESELECT CASE CONSTRUCTCONSTRUCT

The IF condition is nice, but it is difficult to follow when more and more compari-
sons are required. The IF – ELSE flow control makes it easy to write programs to
choose between two alternatives, however, a program needs to choose one of sev-
eral alternatives. We can do this by using IF .. ELSE IF .. ELSE .. END IF, but in
many cases it is more convenient to use the SELECT CASE flow control state-
ment.

SELECT CASE allows you to write program code that is easier to interpret/read
and therefore easier to correct, de-bug. The SELECT CASE provides a better pro-
gram structure for multiple decisions/alternatives.

SELECT CASE testexpression
CASE expressionlist1

[statementblock-1]
[CASE expressionlist2

[statementblock-2]]...
[CASE ELSE

[statementblock-n]]
END SELECT

The SELECT statement uses the value of testex-
pression to transfer control to one of the CASE
statements for execution. The expressionlist is a
list of values which is compared to the testex-
pression to determine which CASE statement is
executed. When the testexpression does not
match any of the expressionlists, then the CASE
ELSE statement is executed.

CASE STUDY. DAY OF THE WEEK
We know what number of day in the week it is, but is that Monday, Tuesday, or

Note:
For improved student learning; It is im-
portant that this OUTPUT exercise be
completed together on the board with
students.

Select
TestExpression

End Select

ExpressionList1 StatementBlock 1

ExpressionList2 StatementBlock 2

ELSE StatementBlock n

No

Yes

Yes

Yes

No

CLS
INPUT "Date Number "; dayNumber

SELECT CASE dayNumber
CASE 1

PRINT "Monday"
CASE 2

PRINT "Tuesday"
CASE 3

PRINT "Wednesday"
CASE 4

PRINT "Thursday"
CASE 5

PRINT "Friday"
CASE 6

PRINT "Saturday"
CASE 7

PRINT "Sunday"
CASE ELSE

PRINT "How many days in your Week?"
END SELECT

SELECT DAYS

QBasic Tutorial – An introduction to Programming Page 33© 1997-200 No-Moa Publishers
Wednesday, February 09, 2000

Wednesday ?

In this example, the SELECT CASE testexpression
uses the variable dayNumber to determine which
CASE statement will be executed by the SELECT
CASE.

The SELECT CASE checks the testexpression which
in our above example is the value in the variable
dayNumber. Then the program scans the list of
"expressionlists" until it finds one that matches that
value. The program then jumps to the statement
block in that CASE.

What if there is no match? If there is no match, then
the program looks for the CASE ELSE statement –
block. If there is no match, and no CASE ELSE then
the program goes to the end of the SELECT CASE
block and continues with the next program statement.

In Class Exercise
1. Draw a flow-chart of the Select Case program

2. Run a desk-check using the values 3 and then 8 and write down what the ex-
pected result is going to be.

Summary
The SELECT CASE checks the testexpression then the program scans the list of
"expressionlists" until it finds one that matches that value. The program then
jumps to the statement block in that CASE.

If there is no match then the program goes to the end of the SELECT CASE block
and continues with the next program statement.

In Class Exercise
1. What is the variable used as the testexpression

2. Which statement block will the program flow to if the testexpression is 3 ?

3. Which statement block will the program flow to if the testexpression is 0 ?

4. What number does the user have to enter to get the message about Prefect ?

Group Exercise
1. Draw a flow-chart of the select case to place into the variable mth$ the actual
month name (eg. January, February) if we input the value of the month into the
variable mth_numb%

2. Write the program code to match the above created flow-chart.

S e lec t
dayN um be r

E nd S e lec t

1 M onday
Y es

2 Tue sd ay

No
Y es

3 W e dn esd ay

No
Y es

4 Th ursda y

No
Y es

5 Fr ida y

No
Y es

6 S atu rda y

No
Y es

7 S u nd ay

No
Y es

W ha t ?

No
Y es

?

QBasic Tutorial – An introduction to Programming Page 34© 1997-200 No-Moa Publishers
Wednesday, February 09, 2000

CASE STUDY. WHICH SCHOOL YEAR ARE WE IN, IN TONGA
Given a student’s Form year (in one of Tonga’s Secondary Schools) what status is
that student ?

1st year, still a babe
2nd – 4th year, developing slowly
5th year and greater, good material.

In Class Exercise
1. Draw a flow-chart of the select case to display a message related to the input the
value of the student Form in the variable stForm%

2. Write the program code to match the above created flow-chart.

Individual Exercise
1. Draw a flow-chart of the select case to place into the variable status$ the actual
student status (ie. Freshman if 1st year student, Sophomore if 2nd year student,
Junior if 3rd year student, Senior if 4th year student) if we input the value for the
student year into the variable stud_year%

2. Write the program code to match the above created flow-chart.

Select
stForm

End Select

>=5 Senior
Yes

2 - 4 Develop'

No
Yes

1 Babe

No
Yes

CLS
INPUT "Which Form is the Student in (1–6): ", stForm

SELECT CASE stForm
CASE IS >= 5
PRINT "A Senior student eligible for Prefect selection"
PRINT "Vakai'i atu pe 'oku fie mataa-pule pe 'ikai."

CASE 2 TO 4
PRINT "Developing Slowly."
PRINT "Ko e fa'ahinga taimi faingata'a, pe 'e tokanga ki he ako, pe ?"

CASE 1
PRINT "Just a Jelly-bean."
PRINT "Tokanga'i hono tauhi 'etau Babe."

END SELECT

The following is a sample solution to the stated problem.

SELECT STUDENT CLASS

QBasic Tutorial – An introduction to Programming Page 35© 1997-200 No-Moa Publishers
Wednesday, February 09, 2000

RREVISITINGEVISITING THETHE CCANTEENANTEEN SSALESALES PPROGRAMROGRAM

Shown below is a flow-chart diagram and rewrite of the Canteen Sales bonus in-
centive using the SELECT CASE structure.

The above sample shows how much easier it is to follow the program flow in a se-
lect statement over the IF THEN ELSE when more than two relation comparisons
have to be used.

'
' Another look at the IF3 program us-

ing SELECT CASE
'
CLS
INPUT "Target "; target
INPUT "Sales "; canteenSales

SELECT CASE canteenSales
CASE IS >= 2 * target

performance$ = "Excellent"
bonus = 1000

CASE IS >= 1.5 * target
performance$ = "Fine"
bonus = 500

CASE IS >= target
performance$ = "Satisfactory"
bonus = 100

CASE ELSE
performance$ = "Unsatisfactory"
bonus = 0
PRINT "You are FIRED!!"

END SELECT

PRINT "Target "; target
PRINT "Sales "; canteenSales
PRINT "Performance ";performance$
PRINT "Bonus "; bonus

Select Case
canteenSales

> 2 * target

> 1.5 *
target

>= target

“Excellent”
bonus = 1000

“Fine”
bonus = 500

ELSE

“Satisfactory”
bonus = 100

“Unsatisfactory”
bonus = 0

End Select

QBasic Tutorial – An introduction to Programming Page 36© 1997-200 No-Moa Publishers
Wednesday, February 09, 2000

RREPETITIONSEPETITIONS –– TTHEHE FORFOR LOOPLOOP
The most common of the loops is the FOR loop. Loops are programming struc-
tures to allow the programmer to repeat a number of instructions. The FOR loop
is the simplest because the number of times the ‘loop’ is repeated is always deter-
mined before executing any of the statements inside the loop. Loops are also
called iteration structures.

The FOR loop structure has the following appearance.

FOR counter = start TO end [STEP increment]
[statementblock]

NEXT [counter [,counter]...]

1. The variable counter is assigned the value of start.
2. The value of counter is compared to the value of
end.

* if the value of counter is less than end, the state-
mentblock is executed.

* if the value of counter is not less than end, the
FOR ... NEXT is completed and the next statement to
be executed is the statement following the FOR ...
NEXT.

A simple example of how the FOR loop works follows

FOR i = 1 TO 10
PRINT “This is the “; i; “time ...”

NEXT i

In this loop we have chosen ‘i’ as the variable name to be our
loop counter.

The loop demonstrates going through the numbers 1 through
to 10 {ie. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. The loop/iteration re-
peats the statements inside the loop 10 separate times. In
each repetition, the counter i is assigned a different value ac-
cording to the list of numbers between 1 and 10.

LOOP PROCESS
i values is the set {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
♦ The 1st time through the repetition; 1 is put into i because it

is the 1st number in the list.
♦ The second time through the loop; 2 is put into i because it is the 2nd n u m -

ber in the list, etc.
♦ This continues until the last number from the list is used.
Inside the Loop.
There is only one statement to be processed (executed), a PRINT command to
send output to the screen. This command is repeated 1 through 10 times, and each
time it will output the value in the counter variable i.
The For loop structure is very good for activities that require a predetermined

i <= 10

i = 1

PRINT

i = i + 1

NO

Y
E

S

counter = start

counter <= end

Inside the Loop

counter = counter + step

QBasic Tutorial – An introduction to Programming Page 37© 1997-200 No-Moa Publishers
Wednesday, February 09, 2000

repetition. Predetermined: If before the loop starts we know exactly how often
the loop will be repeated, then we can say that loop has a ‘predetermined’ repeti-
tion.

CASE STUDY. LOOPING THROUGH THE COLOURS
We are told that QBasic supports 0 to 15 colours for the display of text with the
PRINT command. (Remember Americans spell it COLOR?)

We do not know what these QBasic colours look like, and we could write 0 to 15
different lines of code for each color, but lets see if we can use the new loop struc-
tures.

1 We need to go through the numbers 0 through to 15 so we can use a
FOR counter = 0 to 15.

2 Let us use ncolor as the counter variable

Loop Process

ncolor values is the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15}
♦ The 1st time through the repetition; 0 is put into i because it is the 1st num-

ber in the list.
♦ The second time through the loop; 1 is put into i because it is the 2nd number in

the list, etc.
♦ This continues until the last number from the list is

used.
Inside the Loop.
Each program statement is executed from the beginning of
the loop to the end.

COLOR
For those who
wish to know
more about the
COLOR
statement, more
information is
available in the
Qbasic help
screens.

CLS
FOR ncolor = 0 TO 15

COLOR ncolor
PRINT "Color "; ncolor; "looks like this"

NEXT ncolor

Listing
ncolor >

15 ?

COLOR

color
looks

ncolor =
ncolor + 1

Yes

No

This is the 1 time ...
This is the 2 time ...
This is the 3 time ...
…
This is the 10 time ...

Output

Color 0 looks like this
Color 1 looks like this
Color 2 looks like this
…
Color 15 looks like this

Output

QBasic’s Colors
Black 0
Blue 1
Green 2
Cyan.......................... 3
Red............................ 4
Magenta 5
Brown 6
White......................... 7
Grey 8
Light Blue 9
Light Green 10
Light Cyan............... 11
Light Red................. 12
Light Magenta 13
Yellow...................... 14
Very Bright White 15

QBasic Tutorial – An introduction to Programming Page 38© 1997-200 No-Moa Publishers
Wednesday, February 09, 2000

CASE STUDY. CALCULATING THE SUM OF NUMBERS:
We want to use the computer as a calculator to be able to calculate the sum of
numbers between 1 and any given number n we enter into the computer.

Determine the Purpose.
Stated Above.

What are the Required Data.
• We need a number n
• We need to calculate the sum.

Determine the Logic/Algorithm.
• We need a variable to store the sum (sum)
• We need to go through the numbers from 1 to the ac-

tual number n and for each number add it to sum.
♦ The set is {1, 2, 3, …, n}
♦ Add 1 to sum
♦ Add 2 to sum
♦ Add 3 to sum
♦ ..
♦ Add n to sum

• When we finish going through the list of numbers, then
we are finished.

Draft the Computer Program.
• The above displayed logic shows a consistent repetition

of the Add number to sum. This leads us to review
whether a loop is the best method for performing this
task.

• Before beginning the loop, we will know exactly how
often the loop is to be performed (from the user input)

• Use n as the number the user will enter.
• Use sum to hold the total of the numbers. The total is

initially 0.
• Use i as the loop counter, the set is {1, 2, 3, …, n}

FOR i = 1 to n
♦ Use sum = sum + loop_counter as the formula for

calculations

Extending the 1st two flow-charts, we get a flow chart similar to the one on the left.

1. We need to get the number n we want to work with. Let us get this from the user.
2. We set the current sum to 0 (zero) since we haven’t started counting.
3. We set up the loop (using our previous chart)
- Check if we still have a valid number to add ?
- add the loop counter to sum
- increment, add 1, to the loop counter

4. Print out our calculated sum
i <= n

sum = sum
+ i

Get n

i = i + 1

Sum = 0

Print
sum

No

Yes

loop?

Increase
Sum

increment
loop

No

Yes

1st Attempt at algorithm

i <= n

sum = sum
+ i

i = i + 1

No

Yes

2nd Attempt at algorithm

Note:
For improved student learning; It is im-
portant that this OUTPUT exercise be
completed together on the board with
students.

QBasic Tutorial – An introduction to Programming Page 39© 1997-200 No-Moa Publishers
Wednesday, February 09, 2000

Test & Re-test
1. Make sample calculations on paper and calculator, and compare these to the
computer program calculated results.

In Class Exercise
1. As in the previous Loop examples, write down the set and values for the loop
counter when the user enters 5 for n.

2. Write down what you analyse will be the output for the above program when
the user enters 7 for n.

PRINT "This program calculates the sum of numbers between 1 and"
PRINT "any positive number you enter."
INPUT "What is the number to be summed"; n

Sum = 0 ' The initial total is zero
FOR i = 1 TO n

Sum = Sum + i
NEXT i
PRINT "The sum of 1 + ... + n (when n is > 1) is"; Sum

Sample Solution – Finding the sum of earlier numbers

Teaching Note:
To verify students have understood this structure it is suggested that at least two more examples (of simply the loop structure) be dis-
cussed and reviewed during class time.

Two samples of source is provided here. It is suggested that one example as completed together on the board, and the 2nd, 3rd be at-
tempted by the students under guidance from fellow students and from the teacher.

FOR min% = 25 TO 34 STEP 3 FOR tests = 24 TO 0 STEP –2
PRINT "min is: "; min% PRINT "Tests to go"; tests

NEXT min% NEXT tests

QBasic Tutorial – An introduction to Programming Page 40© 1997-200 No-Moa Publishers
Wednesday, February 09, 2000

RREPETITIONSEPETITIONS –– TTHEHE DO LOOPDO LOOP CONSTRUCTCONSTRUCT

The FOR loop structure fits well for when we know how often we need to repeat
the program instructions. Many programming problems require repetitions which
cannot be determined before the repetition is required. The DO LOOP is used
when we do not know how often the loop will be repeated, but we do now which
conditions we wish to be true to continue repeating the instructions.

The condition for repeating the loop is usually dependent on data being manipu-
lated within the loop.

• DO NOT know how often the loop will be repeated
• DO KNOW conditions for repeating, conditions for stopping
• Condition uses data being manipulated in the loop.

The DO LOOPs are control structures that let you repeat statements in a similar
fashion to the for loop. The DO LOOPs are best used when you do not know how
many times a loop should be processed (another term
for it is indeterminate loops, or conditional loops.)

There are two forms for the DO LOOP structure;
Testing the condition before performing the loop, or
testing the condition after performing the loop.

In a WHILE clause, the looping continues as long as
the condition is true. Looping stops when the condi-
tion becomes false.

In an UNTIL clause, the looping continues as long as
the condition is false. Looping stops when the con-

dition becomes true.

Entry Condition loops evaluate the condition before it executes the instruc-
tions inside the loop. Evaluating at the beginning (or top) means that if the
condition is not met the instructions inside may never be executed.

Exit Condition loops evaluate the condition after it executes the instructions inside
the loop. This means that the instructions in the loop will be executed at least

once.

Condition

Inside the Loop

modify condition
variables

No

Yes

Condition

Inside the Loop

modify condition
variables

Yes

No

Entry-condition loop

Exit-condition loop

DO [{WHILE | UNTIL} condition]
[statementblock]

LOOP

DO
[statementblock]

LOOP [{WHILE | UNTIL} condition]

QBasic Tutorial – An introduction to Programming Page 41© 1997-200 No-Moa Publishers
Wednesday, February 09, 2000

CASE STUDY. CALCULATING THE POWERS
We would like a program to list all the resulting powers
of an integer that is less than 1,000 (the maximum result-
ing power).

For example:
20=2, 21=2; 22=4, 23=8, 24=16, 25=32, 26=64,

27=128, 28=256, 29=512

Determine the Purpose.
Stated above.

What are the Required Data.
♦ n the integer
♦ maximum power to keep the program from

‘overflowing’ we will set it to 1,000
♦ Power is calculated as ni when i goes from 0 to infinite
♦ n0 = 1 by definition of powers (indices)

Determine the Logic.
♦ Use variable Power to store the value of the calculated

power ni. Power = ni

♦ Start with n0=1, … and keep going up until nm is big-
ger than the maximum power.

♦ We can mathematically calculate the Power by either
using the formula
Power = ni –or– use the relationship
Power = Power * n

♦ We cannot use the FOR loop, because we do not know
how many repetitions are required before we go into
the loop.

♦ We do have a condition for exiting the loop (when
Power > maximum power)

♦ We calculate the Power within the Loop
Draft the Computer Program.

♦ MaxPower is a constant and will hold the Maximum number we will approach.
♦ n, and Power are INTEGERS

Test & Re-test.

Keep
Going?

Calculate
Power

Print Out
Power

Logic Review as Flow
Chart

No

Yes

max ?

Get number

Required Data ?

Power
<= max?

Power = n^i

Print Out
Power

Updated Review as
Flow Chart

No

Yes

Power
<= max?

Power = n^i

Print Out
Power

A

Power = 1
i = 1

i = i + 1

No

Yes

max ?

Get number

A

QBasic Tutorial – An introduction to Programming Page 42© 1997-200 No-Moa Publishers
Wednesday, February 09, 2000

Code Review; Desk-Check
If we were to test the program logic using the sample data (n=2) the DO LOOP
structure works as discussed.

• When 1st we look at the Power < MaxPower;
• Power is currently 1 and MaxPower is 1000. The condition is true so enter the

loop
♦ Output the Power; 1
♦ Calculate the next Power; Power = 1 * 2. Power is now 2
♦ We hit the end of the loop, so we go back to the beginning

• When 2nd time we look at the Power < MaxPower. 2 < 1000 so the condition
is true, enter the loop
♦ Output the Power; 2
♦ Calculate the next Power; Power = 2 * 2. Power is now 4
♦ We hit the end of the loop, so we go back to the beginning

• When this time we look at the condition. 4 < 1000 is true, enter the loop.
♦ Output the Power; 4
♦ Calculate the next Power; Power = 4 * 2. Power is now 8
♦ We hit the end of the loop, so we go back to the beginning

• We continue doing this until the condition is no longer true. When the condi-
tion is false, the program continues with the next statement after the loop.

Group Exercise
1. Draw the completed flow-chart for the sample program.

In Class Exercise
1. Write down what the program output will be if the user enters 5 for n.

2. Write down what the program output will be if the user enters 10 for n.

3. Write down what the program output will be if the user enters 20 for n.

Entry-condition loop

Learning Notes:

Demonstrate using n=2; the provided sample, and n=4
to let the students think through the mathematics and
the looping condition.

CONST MaxPower = 1000
DIM Power AS INTEGER
DIM n AS INTEGER

Power = 1 ' The first power n^0 is always 1

COLOR 10, 1
CLS
PRINT "This program prints all powers <"; MaxPower; "of an Integer."
INPUT "Enter an Integer"; n

DO WHILE Power < MaxPower
PRINT Power;
Power = Power * n

LOOP

Listing

QBasic Tutorial – An introduction to Programming Page 43© 1997-200 No-Moa Publishers
Wednesday, February 09, 2000

CASE STUDY. A CONVERSION TABLE
Write a program to print out a table of temperatures in
Celsius and Fahrenheit.

Determine the Purpose.
Stated above.

What are the Required Data.
♦ Beginning and ending value for the calculations

(smallest Celsius to Largest Celsius)
♦ Use the mathematical formula F = 1.8C + 32

Determine the Logic.
♦ Start with the smallest Celsius
♦ Calculate F (Fahrenheit)
♦ Print both the Celsius and Fahrenheit to the screen
♦ Repeat the above until biggest Celsius number is reached.

Draft the Computer Program.
♦ minCel, maxCel to hold the beginning and ending number
♦ celStep to hold how many Celsius up we move before calculating the next Fahr-

enheit.
♦ Celsius we will increment in whole numbers, so we use the INTEGER type
♦ Fahrenheit uses a 1.8 calculation so we need to use a SINGLE or DOUBLE.

(ie. decimal values needs to be stored.)
Test & Re-test.

Code Review; Desk-Check

• When 1st we look at the Celsius <= maxCel;

B ig g e r th a n b ig g e s t?

P R IN T fo rm u la

us e n e x t c e ls iu s

Y e s

N o

p ic k 1 s t c e ls iu s

• Celsius is –10 and maxCel is 30. The condition is true so enter the loop
♦ Calculate Fahren. Fahren is now 14
♦ Print the value of Celsius and Fahren to the screen
♦ Calculate Celsius = Celsius + celStep; Celsius is now –5
♦ We hit the end of the loop, so we go back to the beginning

REM
' Prints a table of Celcius and Fahrenheit equivalents.

CONST minCel = -10 ' minimum Celsius temperature
CONST maxCel = 30 ' maximum Celsius temperature
CONST celStep = 5 ' increment between Celsius values

DIM Celsius AS INTEGER
DIM Fahren AS SINGLE

COLOR 14, 7
CLS
PRINT "This program prints a table of Celsius and Fahrenheit temperatures"

Celsius = minCel

PRINT "Celsius Fahren"
DO WHILE Celsius <= maxCel

Fahren = (1.8 * Celsius) + 32
PRINT USING "### ###.#"; Celsius; Fahren
Celsius = Celsius + celStep

LOOP

QBasic Tutorial – An introduction to Programming Page 44© 1997-200 No-Moa Publishers
Wednesday, February 09, 2000

• When 2nd time we look at the Celsius <= maxCel; Celsius is –5 and maxCel is
30. The condition is true so enter the loop
♦ Calculate Fahren. Fahren is now 23
♦ Print the value of Celsius and Fahren to the screen
♦ Calculate Celsius = Celsius + celStep; Celsius is now 0
♦ We hit the end of the loop, so we go back to the beginning

• When this time we look at the test condition; 0 < 30 is true so enter the loop
♦ Calculate Fahren. Fahren is now 32
♦ Print the value of Celsius and Fahren to the screen
♦ Calculate Celsius = Celsius + celStep; Celsius is now 5
♦ We hit the end of the loop, so we go back to the beginning

• We continue doing this until the condition is no longer true. When the condi-
tion is false, the program continues with the next statement after the loop.

Group Exercise
1. Draw a more detailed flow-chart of the above program.

In Class Exercise
1. Write down what the program output will be if celStep were 10 instead of 5.

2. Write down what the program output will be if celStep is 5 and maxCel is 10.

QBasic Tutorial – An introduction to Programming Page 45© 1997-200 No-Moa Publishers
Wednesday, February 09, 2000

CASE STUDY. SETTING A GOAL AND WORKING TOWARDS IT
We are interested in finding out whether, and how much money we need to save in
our Bank Account to retire.

Determine the Purpose.
Stated above.

What are the Required Data.
♦ Target Savings
♦ Deposit Amount
♦ Bank Interest Rate
♦ Length of Deposit

Determine the Logic.
♦ Start with a balance of zero, and a goal to work towards
♦ A deposit amount is taken
♦ The balance after the first year is deposit + interest
♦ The balance after the 2nd year is the 1st year balance +

interest
♦ The balance after the 3rd year is the 2nd year balance +

interest
Draft the Computer Program.

♦ goal for the retirement amount goal, must support
coins as well as dollars.

♦ payment for the initial deposit amount, must
support coins as well as dollars.

♦ balance for the current balance in the ac-
count, must support coins as well as dollars.

♦ interest for the interest rate being charged to
the account, must support percentages
(decimal values.)

♦ Symbolic Representation:
♦ new balance = current balance + interest
♦ balance = balance * (1 + interest rate)

Test & Re-test.

Code Review; Desk-Check

DIM goal AS DOUBLE
DIM interest AS DOUBLE
DIM payment AS DOUBLE
DIM years AS INTEGER
DIM balance AS DOUBLE
balance = 0

PRINT "So you want to put some money aside for retirement, hmmmm."
INPUT "How much money do you need to retire"; goal
INPUT "How much money will you contribute every year"; payment
INPUT "Interest rate in % (eg. use 7.5 for 7.5%)"; interest

interest = interest / 100
balance = payment
DO WHILE balance < goal

balance = balance * (1 + interest)
years = years + 1

LOOP
PRINT
PRINT "You can retire in "; years; " years"
PRINT "with "; balance; "in the bank"

Declare
Variables

Define default
values

Get unknown
values from

user

balance <
goal ?

Make
Calculations

PRINT
results

QBasic Tutorial – An introduction to Programming Page 46© 1997-200 No-Moa Publishers
Wednesday, February 09, 2000

Group Exercise

In Class Exercise
1. Using the previous Code Review; Desk-Checks, perform your own Code Re-
view on how the program will process the program using the following sample
data:

goal = 50,000
interest = 5.0%
payment = 5,000

CCOMMENTARYOMMENTARY ONON LLOOPOOP SSTRUCTURESTRUCTURES??
Kernighan and Ritchie (the designers of the technical programming language
called “C”) estimate that the exit-condition (evaluating after the loop) is needed
for about 5% of loops.

There are several reasons why computer scientists consider an entry condition
loop superior. One is the general principle that it is better to look before you leap
(or loop) than after. A second point is that a program is easier to read if the loop
test is found at the beginning of the loop.

Finally, in many uses, it is important that the loop be skipped entirely if the test is
not initially met.

QBasic Tutorial – An introduction to Programming Page 47© 1997-200 No-Moa Publishers
Wednesday, February 09, 2000

cution of the loop.

There are very legitimate times when an exit-condition loop makes more sense
than rewriting your logic (algorithm) to fit the entry-condition loop. The above

exit-condition loop requires fewer instructions than the entry condition loop.

The entry-condition loop shown above indicates that for some algorithms an entry-
condition loop can get complicated trying to duplicate code better implemented as
an exit-condition loop.

RREPEATINGEPEATING –– TTHEHE EEXITXIT CCONDITIONONDITION LLOOPOOP
After each execution of the loop-body, the exit-condition is evaluated. If the exit-
condition is true, loop exit occurs and the next program statement is executed. If
the termination exit-condition is false, the loop-body is repeated.

By rearranging the logic used in our earlier en-
try-condition loop we now have an exit-
condition loop performing the same calcula-
tion. This will only work properly if the user
had entered an n > 0.

The exit condition loop checks the condition
for repeating the loop (iteration) after the exe-

nguesses = 0

DO
nguesses = nguesses + 1
PRINT "Guess #:"; nguesses;
INPUT guess
LOOP UNTIL guess = numb OR guess = 0

nguesses = 1
PRINT "Guess #:"; nguesses;
INPUT guess
DO WHILE guess <> numb AND guess <> 0
nguesses = nguesses + 1
PRINT "Guess #:"; nguesses;
INPUT guess

LOOP

Figure: Entry condition (on left) and exit-condition (right) statements.

PRINT "Press Esc to exit...";

DO
' {stuff to do}

LOOP UNTIL INKEY$ = CHR$(27)

PRINT "Press Esc to exit...";
'{stuff to be done before checking the
“Esc” has been pressed}
DO WHILE INKEY$ <> CHR$(27)
' {stuff to do}
LOOP

Figure: Entry condition (on left) and exit-condition (right) statements.

Power > 1,000 ?

PRINT stuff

modify condition
variables

No

Yes

Power <= 1,000

PRINT stuff

Increase Power

No

Yes

DO
 PRINT Power;
 Power = Power * n
LOOP UNTIL Power > MaxPower

Figure: Entry condition (on left) and exit-condition (right) statements.

DO WHILE Power <= MaxPower
PRINT Power;
Power = Power * n

LOOP

QBasic Tutorial – An introduction to Programming Page 48© 1997-200 No-Moa Publishers
Wednesday, February 09, 2000

A common use of the exit-condition loop is for monitoring input
where a specific value is desired.

Code Review; Desk-Check
Inside the loop

♦ A$ is given a character from the keyboard.
♦ The cursor is put at row 12; column 25
♦ Output the entered character
♦ At the end of the loop check whether "Y" or

"N" has been entered. If condition true, con-
tinue at the end of the loop, otherwise repeat
the loop.

Group Exercise
1. Draw a flow-chart of the program flow in the
code listed above.

Exit-Condition Menus
An example of where exit-condition loops are more appropriate than entry-
condition loops are programs with “menu” choices from which the program user
selects a program operation. The menu for a statistics program might look as fol-
lows.

1. Compute an average
2. Compute a standard deviation
3. Find the median
4. Find the smallest and largest value
5. Plot the data

Keep the use of exit-condition loops to cases
which require at least one repetition of the logic/
algorithm. For instance, the logic for a number
guessing game is a good fit for using the exit-
condition loop.

INKEY$ Reads a character from
the keyboard.

• INKEY$ returns a null string if
there is no character to re-
turn.

• For standard keys, INKEY$
returns a 1-byte string con-
taining the character read.

• For extended keys, INKEY$
returns a 2-byte string made
up of the null character
(ASCII 0) and the keyboard
scan code.

LOCATE moves the cursor to a
specified position on the screen.

LOCATE [row%] [,column%]

■ row% and column% The
number of the row and column
to which the cursor moves.

COLOR 10, 1
CLS
LOCATE 25, 1
PRINT "Press Yes or No to continue (Y/N)"

DO
A$ = INKEY$
LOCATE 12, 25
PRINT "You entered "; A$

LOOP UNTIL A$ = "Y" OR A$ = "N"

DO
' player guesses the number
LOOP UNTIL {player quits –or– guess is correct}

Right or Quit ?

Do the Work

Guess The Number

No

Yes

QBasic Tutorial – An introduction to Programming Page 49© 1997-200 No-Moa Publishers
Wednesday, February 09, 2000

0. Quit / Return to Previous Menu
Enter your choice (1 through 5):

An exit-condition loop, can repeat, let the user keep
using the above menus until the user chooses to quit
by selecting 0. One thinking algorithm for the
above menu would be represented in the below
code design.

do

{ whatever the work is to be done within the menu
selection }

loop until nchoice = 0

Putting together a sample of just the above menu, without the actual work that is
to be done with the user selection would look something similar to the following
sample code.

Group Exercise
1. Draw a flow-chart of the above code program flow.

In Class Exercise
1. Using the previous Code Reviews as an example, describe what the program
above will do when the user enters the following data samples:

1, 3, 4, 2, 0, 5, 3

Quit ?

Do the Work

Pick the Menu Option

No

Yes

CLS
PRINT "Which statistical Analysis do you wish"
PRINT
PRINT " 1. Compute an average"
PRINT " 2. Compute a standard deviation"
PRINT " 3. Find the median"
PRINT " 4. Find the smallest and largest"
PRINT " 5. Plot the data"
PRINT
PRINT " 0. Quit / Return to Previous Menu"

DO
INPUT "Enter your choice (0 through 5) "; a%

' Use SELECT CASE or IF to check the user
' input, and do the work that has been requested

LOOP UNTIL a% = 0

SAMPLE CODE: MENU SYSTEM

QBasic Tutorial – An introduction to Programming Page 50© 1997-200 No-Moa Publishers
Wednesday, February 09, 2000

The following program code brings together a number of the flow control struc-
tures we have reviewed thus far and shows the utility (usefulness) of the exit-
condition loop.

Be warned: The program uses a number of the programming design structures
discussed earlier.

Problem
Everyone likes playing games, and we want to write a game using the old guessing
technique, but this time the computer will pick the number and our work will be to
try and guess the number the computer has picked. The fewer the guesses we
make the better we are at playing the game.

Determine the Purpose.
Stated above.

What are the Required Data.
♦ We need a secret number for guessing
♦ We need the users guess
♦ To limit the size of the game we want to limit it somehow

♦ We need the biggest number allowed
♦ We need the smallest number allowed

Determine the Logic.
♦ Our program picks a secret number
♦ The user takes a guess, and we keep track of

how many guesses are being taken.
♦ We check whether the guess got it right.

♦ If they guessed the number, the game is over.
♦ If they guessed a number lower than our se-

cret number, we tell them it is too low, go
back and let the user make another guess.

♦ If they guessed a number higher than our se-
cret number, we tell them it is too high, go
back and let the user make another guess.

♦ For the really fast guesses, we give the user a

CC
O

M
B

IN
IN

G
O

M
B

IN
IN

G
T

H
U

S
T

H
U

S
FF

A
R

A
R

Right or Quit ?

Do the Work

Guess The Number

No

YesSelect
guess

End Select

> secret Too Big
Yes

< secret Too Small

Yes

Just Right
Yes

No

No

ELSE

Do The Work
Expanded

QBasic Tutorial – An introduction to Programming Page 51© 1997-200 No-Moa Publishers
Wednesday, February 09, 2000

little extra congratulations.
Draft the Computer Program.

♦ maxNumb and minNumb will contain
our largest and smallest number, and are
constants that do not change during
the program.

♦ numb is the number to be guessed, guess, nguesses, quitNumb are all Inte-
gers and hopefully self-explanatory variables (put additional info in source
code)

♦ Picking a secret number in our game is the same as
picking a ‘random’ number. For QBasic this is used
through the below functions documented in the QBasic
HELP screens.

♦ RANDOMIZE TIMER
♦ numb = INT (RND * maxNumb) + minNumb

♦ Tell the player the rules of the game, and we have
picked a secret number to be guessed.

♦ Repetitions. We do not know how many guesses it
will take the user to win the game, so we will use a DO
LOOP.

♦ We use an exit-condition loop, because the user
must tell us whether they wish to continue, or not
play the game.

♦ Record the number of guesses performed with each
loop.

♦ Checking the Guesses. We can use either the IF or
the SELECT CASE. The SELECT CASE looks
cleaner, so we will use that. (logic stated above)

♦ Checking whether further congratulations should be
given. Since we used the SELECT CASE previously,
we will use IF here.

♦

Test & Re-test.

Fast
Guess?

We are Happy
Yes

NO

RANDOMIZE initializes the random-number generator.
TIMER Returns the number of seconds elapsed since midnight.
RND returns a single-precision random number between 0 and 1.

RANDOMIZE [seed%]
RND[(n#)]

seed% A number used to initialize the random-number generator.
If omitted, RANDOMIZE prompts for it.

n# A value that sets how RND generates the next random number:

n# RND returns
Less than 0 The same number for any n#
Greater than 0 (or omitted) The next random number
0 The last number generated

Example:
RANDOMIZE TIMER
x% = INT(RND * 6) + 1
y% = INT(RND * 6) + 1
PRINT "Roll of two dice: die 1 ="; x%; "and die 2 ="; y%

Declare Variables

Pick a secret #

Explain the
Rules

Loop, taking guesses

Congratulations

Start

Stop

QBasic Tutorial – An introduction to Programming Page 52© 1997-200 No-Moa Publishers
Wednesday, February 09, 2000

TTHEHE NNUMBERUMBER GGUESSINGUESSING GGAMEAME

RREVIEWEVIEW EEXERCISESXERCISES..
1. Draw a detailed flow-chart diagram of the above exit-condition program.
Hint: Combine the separate flow-charts we have reviewed for each of the separate
items.

2. The Number Guessing game limits the guessing between 1 and 100. Which
variables will you modify to let the program to ask the user to provide the smallest
number and the biggest number.

3. The Number Guessing game does not provide a way for the user to continue
playing the game, without having to restart the program. Draw a flow-chart indi-
cating the changes you would make to allow the user to select to play another
game.
Hint: Finish Question 1, and this part is much easier.

♦

QBasic Tutorial – An introduction to Programming Page 53© 1997-200 No-Moa Publishers
Wednesday, February 09, 2000

' Program:
'
' Author:
' Class:
'
' Purpose:
' This is a guessing game program to highlight the use of flow control
' where the user tries to guess a secret number
'
' (a) Start
' Declare variables
CONST maxNumb = 100 ' The biggest number
CONST minNumb = 1 ' The smallest number

DIM guess AS INTEGER ' The guess
DIM numb AS INTEGER ' The secret number
DIM nguesses AS INTEGER ' The number of guesses
DIM quitNumb AS INTEGER ' The number the user can use to Quit

' Generate a random number for the user to guess
' Put the secret number into ‘numb’
RANDOMIZE TIMER
numb = INT(RND * maxNumb) + minNumb
quitNumb = minNumb – 1
' Explain the game
'
CLS
PRINT "Number Guessing Game : Charley Alpha"
PRINT "I have picked a secret number between and including";
PRINT minNumb; "and"; maxNumb
PRINT "How many times will it take you to guess the number?"
PRINT "If you want to give-up at any time, just enter"; quitNumb

nguesses = 0
DO

nguesses = nguesses + 1
PRINT "Guess #:"; nguesses;
INPUT guess
SELECT CASE guess
CASE IS > numb

PRINT "Too high"
CASE IS < numb

PRINT "Too Low"
CASE ELSE

' They got it so we should be going out soon
PRINT "hmmmm"

END SELECT
LOOP UNTIL guess = numb OR guess = quitNumb

PRINT
IF guess = numb THEN

PRINT "Congratulations"
IF nguesses < 10 THEN

PRINT nguesses; "guesses is real fast smart one. ";
END IF
PRINT "You got it"

ELSE
PRINT "Quitter !"

END IF
' STOP

D
ec

la
re

th
e

va
ria

bl
es

to
be

us
ed

th
ro

ug
h

th
e

pr
og

ra
m

.

P
ic

k
a

se
cr

et
nu

m
be

r

E
xp

la
in

th
e

ga
m

e
so

th
e

pe
rs

on
us

in
g

it
un

de
rs

ta
nd

s

Lo
op

,w
ai

tin
g

fo
r

th
e

us
er

to
gu

es
s

th
e

co
rr

ec
tn

um
be

r,
or

ge
ti

t
w

ro
ng

.
W

hi
le

ch
ec

ki
ng

ea
ch

gu
es

s
w

e
te

ll
th

e
us

er
w

he
th

er
th

ey
ar

e
gu

es
si

ng
hi

gh
er

or
lo

w
er

.

A
lit

tle
in

ce
nt

iv
e

fo
r

th
e

us
er

to
pl

ay
ag

ai
n,

te
ll

th
em

ho
w

go
od

th
ey

ar
e

if
th

ey
gu

es
s

co
rr

ec
tly

an
d

fa
st

.

Sample Source Code Solution

QBasic Tutorial – An introduction to Programming Page 54© 1997-200 No-Moa Publishers
Wednesday, February 09, 2000

Notes:
Source code for
examples in
these exercises
should be
available on the
school server for
student access.

Sample solutions/
outputs for the
projects are
provided for
students in
executable form
only.

MMODULEODULE RREVIEWEVIEW QQUESTIONSUESTIONS
1. A very common term in programming is “VARIABLE”. Define what a variable is:

2. There are two types of variables. List, describe and give an example for each of these two types

3. There are many ways of assigning data to a variable. Using an example, describe the ways of storing
a value in a variable

4. Comment lines are very common in programs. Give a reason why comment lines are included in
programs

5. There are two ways of writing comments on a program. Identify each method

6. For each of the following reserved words, Describe its purpose and write down a simple example

a) PRINT
b) DATA
c) CLS
d) END

SSOURCESOURCES ANDAND RREFERENCESEFERENCES
Butkus, Chuck, teach yourself QBasic, 2nd Ed., (New York, MIS Press, 1994)
Cornell, Gary and Cay S. Horstman, Core Java, (Mountainview, SunSoft Press,
1996)
Hergert, Douglas, QBasic Programming for Dummies, (Foster City, IDGBooks,
1994)
Koffman, Elliot B. Problem Solving and Structured Programming in Modula-2,
(Reading, Addison Wesley Publishing Co., 1988)
Liberty, Jesse, Teach Yourself C++ in 21 Days, (Indiana, SAMS publishing, 1994)
Microsoft, QBasic Help, (Redmond, Microsoft Corporation, 1995)
Presley, Bruce and Freitas, William, A Guide to Structured Programming in
BASIC for the IBM PC and Compatibles 3rd Ed. (Pennington, Lawrenceville
Press, 1992)
Salmon, Steven. The Beginners Basic Helpfile v2, (Hampshire, na, 1997)
Waite, Mitchell & Stephen Prata, Donald Martin, C Primer Plus (Indianapolis,
Howard W. Sams & Co., 1984)

http://www.tongatapu.net.to/compstud/ - Computer Studies Course Notes
http://www.tongatapu.net.to - Tonga on the 'NET

http://www.tongatapu.net.to is available on all networked computers at Queen
Salote College and participating Schools.

© 1997-1999 No-Moa Publishers
Wednesday, February 09, 2000

TTOO DDOO LLISTIST –– SSOO ITIT STARESSTARES ATAT MEME UNTILUNTIL ITIT ISIS DONEDONE

♦ Functions and Subroutines
♦ File Input/Output
♦ String Manipulation
♦ Data Structures

